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Quantitative mass spectrometry data necessitates an an-
alytical pipeline that captures the accuracy and compre-
hensiveness of the experiments. Currently, data analysis
is often coupled to specific software packages, which
restricts the analysis to a given workflow and precludes a
more thorough characterization of the data by other com-
plementary tools. To address this, we have developed
PyQuant, a cross-platform mass spectrometry data quan-
tification application that is compatible with existing
frameworks and can be used as a stand-alone quantifica-
tion tool. PyQuant supports most types of quantitative
mass spectrometry data including SILAC, NeuCode, 15N,
13C, or 18O and chemical methods such as iTRAQ or TMT
and provides the option of adding custom labeling strat-
egies. In addition, PyQuant can perform specialized anal-
yses such as quantifying isotopically labeled samples
where the label has been metabolized into other amino
acids and targeted quantification of selected ions inde-
pendent of spectral assignment. PyQuant is capable of
quantifying search results from popular proteomic frame-
works such as MaxQuant, Proteome Discoverer, and the
Trans-Proteomic Pipeline in addition to several stand-
alone search engines. We have found that PyQuant rou-
tinely quantifies a greater proportion of spectral assign-
ments, with increases ranging from 25–45% in this study.
Finally, PyQuant is capable of complementing spectral
assignments between replicates to quantify ions missed
because of lack of MS/MS fragmentation or that were
omitted because of issues such as spectra quality or
false discovery rates. This results in an increase of bio-
logically useful data available for interpretation. In sum-
mary, PyQuant is a flexible mass spectrometry data
quantification platform that is capable of interfacing
with a variety of existing formats and is highly customi-
zable, which permits easy configuration for custom
analysis. Molecular & Cellular Proteomics 15: 10.1074/
mcp.O115.056879, 2829–2838, 2016.

Technological advances in quantitative MS-based pro-
teomics now permit measurement of the abundance of tens of

thousands of molecules in complex biological systems in a
global fashion. MS-based quantitative analysis is traditionally
achieved through two methodologies: label-free or those in-
volving labeling of samples for multiplexed analysis. Label-
free quantification uses either the number of spectra or the
precursor ion intensity of the detected analytes to provide
abundance estimates (1, 2). Label-based quantification is
based on introducing known mass differences between sam-
ples and then comparing the relative abundance of the ions of
interest that differ by the known masses. The mass difference
has traditionally been introduced into peptides through chem-
ical labeling of samples with various stable isotope-containing
“tags” or by metabolically incorporating isotopically labeled
amino acids. Two popular chemical modification strategies
are isobaric tag for relative and absolute quantification
(iTRAQ)1 and tandem mass tags (TMT), which rely on frag-
mentation of the reporter tag for quantification (3, 4). For in
vivo incorporation of isotopic labels, stable isotope labeling by
amino acids in cell culture (SILAC) is commonly used in which
isotopically labeled amino acids, usually arginine and lysine,
are incorporated into proteins as they are synthesized (5).

The utility of quantitative MS data is highly dependent on
the accuracy and comprehensiveness of the tools used for
analysis. The first step in quantitative proteomic data analysis
is to associate spectral information of MS and MS/MS scans
with peptide sequences, followed by quantification of the
identified peptides. This provides two avenues to increase the
rate of quantification: an increase in spectral assignments
and/or an increase in the fraction of scans that are quantified.
To increase the number of spectral assignments, common
approaches include the integration of multiple database
search engines, iterative searches, wide-tolerance searches,
and custom database searches (6–13). The major benefit of
these approaches is an increase in the number of spectra
assigned to peptides. Although increasing the number of

From the ‡McKusick-Nathans Institute of Genetic Medicine, Johns
Hopkins University School of Medicine, Baltimore, Maryland 21205;
�Department of Applied Chemistry, Kyung Hee University, Yongin,
Gyeonggi, South Korea; §Departments of Biological Chemistry, Pa-
thology and Oncology, Johns Hopkins University School of Medicine,
Baltimore, Maryland 21205; §§Ginkgo Bioworks, 27 Drydock Ave,
Boston, MA 02210, USA

Received December 11, 2015, and in revised form, May 18, 2016
Published, MCP Papers in Press, May 26, 2016, DOI

10.1074/mcp.O115.056879
Author contributions: C.J.M., M.K., and A.P. designed research;

C.J.M. performed research; C.J.M. contributed new reagents or an-
alytic tools; C.J.M., M.K., C.N., and A.P. analyzed data; C.J.M., M.K.,
and A.P. wrote the paper.

1 The abbreviations used are: iTRAQ, isobaric tag for relative and
absolute quantification; TMT, tandem mass tags; PSM, peptide spec-
tral assignments; XIC, extracted ion chromatogram.

Technological Innovation and Resources
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
This paper is available on line at http://www.mcponline.org

crossmark

Molecular & Cellular Proteomics 15.8 2829

http://crossmark.crossref.org/dialog/?doi=10.1074/mcp.O115.056879&domain=pdf&date_stamp=2016-5-26


spectral assignments allows for a greater number of quanti-
tative measurements, it does not address a more fundamental
issue that programs used for quantitation only quantify a
subset of the available data. Analogous to database search
engines, each program used for quantitation has its own
method for quantifying data. Thus, data quantified by one
program may be missed by another and there may be inherent
limitations that are common to several programs.

To address these issues, we have developed PyQuant as a
new framework for quantitative analysis of MS data. PyQuant
is a versatile, cross-platform quantitation tool that can be
used in conjunction with existing data analysis frameworks or
as a quantification node for a minimal, light-weight mass
spectrometry data analysis pipeline. PyQuant accepts a vari-
ety of input formats, including the mzML and pepXML for-
mats, several commonly used proteomic search engines and
allows for a generic tab delimited input for search engines that
are not natively supported. Additionally, it is compatible with
widely used quantitative MS methods such as metabolic la-
beling (e.g. SILAC, NeuCode, 15N, and 18O) and chemical
tagging (e.g. iTRAQ and TMT) and allows users to define
custom labeling and data quantitation strategies. PyQuant
can serve as a simple, stand-alone quantitation program fol-
lowing peptide assignment of many search algorithms such
as Comet or X!Tandem (14, 15). This allows the user to have
a minimal, easily deployed pipeline for mass spectrometry
data analysis. Also, PyQuant can serve as a post-processor of
data analyzed with existing frameworks such as MaxQuant
(16), Proteome Discoverer, or the Trans-Proteomic Pipeline
(TPP) (17), which allows for an additional, independent algo-
rithm to verify existing quantification values as well as quantify
data excluded by other algorithms.

MATERIALS AND METHODS

Software Development and the Availability of PyQuant—PyQuant is
a command line driven program developed using the Python pro-
gramming language, and is compatible with both Python 2.7� and
Python 3.5�. For GUI-based access, PyQuant can be deployed using
the Wooey framework [https://github.com/wooey/Wooey/]. The web
based interface uses jQuery, DataTables, pako, and c3 for visualiza-
tion. Installation instructions, source code, and guides for PyQuant
are available at https://pandeylab.github.io/pyquant/ and it is com-
patible with most major operating systems.

Although PyQuant is capable of quantifying at any MSn levels and
is highly customizable, for simplicity we describe PyQuant’s algorithm
by stepping through two common quantification scenarios: a tradi-
tional proteomics data analysis pipeline, in which the XIC of a pre-
cursor ion is quantified, and an experiment utilizing chemical tags
such as iTRAQ, where the MS2 scan is used to identify and provide
quantification of a peptide. However, PyQuant can be configured to
quantify at any MS level, which allows it to be used with emerging
mass spectrometry strategies such as MS3-based quantification.
Finally, we adopt the term analyte to comprise the physical entity of
interest, such as a peptide and we use the term ion species to refer to
a distinct m/z value. The analyte may be comprised of one or more ion
species, such as the monoisotopic peak as well as peaks resulting
from the inclusion of naturally occurring isotopes.

The steps of PyQuant can be broken down into several distinct
steps: input data processing, peak picking, and quantification of the
extracted ion chromatogram (XIC) (Fig. 1). Because of PyQuant’s
flexibility, there are many ways peaks can be assigned and selected.
Thus, we cover first how PyQuant processes different types of data,
and end with a step common to all algorithms, quantification of the
XIC.

Input Data Processing—PyQuant accepts a variety of data as input.
For data that has been processed with other frameworks, PyQuant
currently supports the pepXML files created by the TPP, msf files
produced by Proteome Discoverer, and evidence and ms_ms text
files produced by MaxQuant. For search engines, PyQuant can parse
the output of X!Tandem (15), search engines that produce pepXML
files such as Comet (14) and Mascot (18) if the ms_parser library is
installed. To provide compatibility with an assortment of programs,
PyQuant can also be supplied with a generic tab delimited file pro-
viding information on spectral assignments. Lastly, PyQuant is able to
operate solely on raw mass spectrometry data in the mzML format.

Processing of Raw Data—In the absence of any provided annota-
tion, PyQuant will quantify all MS1 scans with a corresponding MS2
scan. This can be used to perform simple analysis of raw data, such
as identifying intense peaks that may represent sample contaminants,
unspecified modifications, or interesting biological findings such as
novel or nontryptic peptides that were missing from a database
search. PyQuant can also be provided with target ions to search for in
raw data, which can be used to identify missing values between
replicates or perform targeted searches for post-translational modi-
fications through the use of signature ions.

Processing of Mixed Resolution Data—It is sometimes useful to
acquire scans at different resolution levels, such as in NeuCode
labeling. To assist with this analysis, PyQuant allows a user to define
a minimal resolution power of a scan to be considered for quantifi-
cation. This allows the user to quantify scans using this time saving
data acquisition strategy, which is becoming more popular as the
resolving power of mass spectrometers increases.

Processing of Peptide Spectral Assignments—After being provided
with the output of a given search engine or platform, PyQuant begins
by parsing result files for peptide spectral assignments (PSMs). Fol-
lowing this, PyQuant checks whether a labeling strategy has been
defined. For known data formats that define the labeling strategies,
such Proteome Discoverer’s msf file or X!Tandem’s XML output, any
user defined labeling strategy is automatically parsed and applied.
However, for cases where this information is not embedded in the file,
or if a vendor format changes, the labeling strategy can be supplied
as a simple tab delimited file. Next, because the mass error changes
as a function of the m/z of an ion, the error between the theoretical
peptide’s mass and the observed mass is plotted and fit to a spline
function (supplemental Fig. S1). This spline is used to offset the
machine drift with higher m/z values, which would otherwise make it
difficult to identify values at a higher m/z within a given error toler-
ance. PyQuant then identifies the precursor ions of PSMs, and if a
labeling strategy has been defined, PyQuant searches for corre-
sponding labeled peaks in the quantification scans irrespective of
whether these peaks have been fragmented. This helps to identify and
quantify peaks that were not selected for fragmentation.

At this point, PyQuant has identified precursor ions and any appli-
cable labeled peaks from the PSMs. If the user chooses to quantify
scans at the MS1 level, PyQuant identifies the isotopic cluster of each
precursor ion. However, because each isotopic cluster may be com-
prised of a mixture of overlapping ion species, the profile for each ion
is fitted to a Gaussian mixture model to remove any interfering ions
(supplemental Fig. S2). Following this, the peaks for each isotopic
cluster are integrated to provide an abundance measure for each ion
species detected. Finally, this process is repeated for neighboring
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scans until all ion species comprising an analyte can no longer be
identified in two subsequent scans.

Quantifying the extracted ion chromatogram—To measure the
abundance of a given analyte, the extracted ion chromatogram (XIC)
is generated by extracting intensities from each isotopic peak of an
ion species and plotting them against their respective retention times.

For each XIC, multiple Bi-Gaussian peaks are fit to the data to
accurately model the ion species of interest as well as any contami-
nating ions. A Bi-Gaussian peak was chosen because it better models
the skewness of elution profiles as compared with a Gaussian distri-
bution (supplemental Fig. S3). To avoid over-fitting the data with
multiple Bi-Gaussian distributions, the number of Bi-Gaussian peaks

FIG. 1. Overview of PyQuant’s data processing algorithm.
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modeling the data is determined using the Bayesian information
criterion (BIC) (19), which guards against over-fitting by penalizing
additional parameters. Following this, the mean and standard devia-
tions of each peak is compared with the retention time that the initial
scan was identified at, and peaks not containing the retention time are
excluded. This routine is performed for all isotopic clusters and la-
beled pairs found for a given ion species. Next, because the elution
profile for isotopic clusters and their isotopically labeled pairs should
be similar, the peak shape of all isotopic clusters are compared and
outlier peaks are identified and excluded by the minimum covariance
determinant method (supplemental Fig. S4A–S4C) (20). Lastly to
measure the abundance for each ion, the area under the XIC is
integrated.

Confidence Estimates of Quantification—PyQuant uses several ap-
proaches to quantify data. However, this can result in the inclusion of
noisy, unreliable data. To guard against this, PyQuant employs sev-
eral methods to provide an estimate of the accuracy of quantification.
PyQuant uses a machine learning algorithm trained with a manually
curated data set of “good” and “poor” fits to provide a confidence
measurement of the quality of fits. This takes into account variables
such as the signal to noise ratio, the intensity of an analyte, the width
of an analyte’s retention time, and the density of the fitted peak to
assess how accurate a given measurement is. Within the data set of
known ratios, selecting only high confidence fits results in a tighter
distribution of quantified peptides (supplemental Fig. S5). Lastly, be-
cause there is no substitute for manual validation, PyQuant provides
an interactive HTML based output that allows a user to filter values,
assign cutoffs, and manually inspect every isotope selected and the
XIC.

Data Output and Visualization—PyQuant provides two files for the
user. One is a tab delimited file that can be easily viewed in excel or
processed further in a given data analysis pipeline. The other is a
HTML file that offers an interactive browser-based exploration of the
data. PyQuant uses several open source JavaScript libraries to pro-
vide an intuitive user interface with advanced data table manipulation.
Additionally, PyQuant provides detailed graphics depicting which
isotopes were selected in each scan, the XIC with corresponding
peak fits, and integration values for every ion species. This allows the
user to make an informed choice on whether an ion deemed signifi-
cant by their chosen criteria, such as a fold change between samples,
is truly significant or merely an algorithmic error.

Preparation of Peptide Samples for Standard MS Data Set—A
lysine and arginine auxotrophic E. coli strain, SLE1, was purchased
from the Caenorhabditis Genetics Center (CGC) and grown in M9
Minimal Media (Cold Spring Harbor Protocols). Each culture was
grown with a mixture of SILAC isotopes at the desired mixing ratio,
lysed, and fractionated via SDS-PAGE. Gel pieces were excised and
destained with 40 mM ammonium bicarbonate and 40% acetonitrile
(destain buffer) at room temperature. Following destaining, samples
were reduced by incubation with 5 mM dithiothreitol (DTT) for 10 min
at 60 °C. After reduction, samples were alkylated by 10 mM iodoace-
toamide for 20 min. Following reduction and alkylation, samples were
washed with destain buffer and incubated with 100% acetonitrile on
ice until dehydrated. After dehydration, samples were resuspended in
10 �g/ml trypsin until the samples were rehydrated. After this, excess
trypsin was removed and the sample was digested overnight. Elution
of digested peptides was performed by adding 80% acetonitrile with
0.1% trifluoroacetic acid (TFA) and incubated at 25 °C on a shaker for
20 min. After 20 min, the supernatant was removed and the eluted
peptides were lyophilized and stored at �20 °C until LC-MS/MS
analysis.

For labeling of C. elegans, E. coli strain SLE1 was purchased from
the CGC and labeled with light and heavy amino acids. Light cultures
were grown in LB and heavy cultures were grown in M9 Minimal

Media (Cold Spring Harbor Protocols) with the isotopically labeled
amino acids Arginine-10 and Lysine-8. Each culture was grown over-
night, and centrifuged at 8000 � g for 10 min at 4 °C. For each 250 ml
of culture pelleted, 50 ml of S. Media (21) was added and the pellet
was resuspended. For culturing of C. elegans, 50 ml of resuspended
E. coli was added to a 1 L flask with C. elegans and 10 �g/ml of
Nystatin to prevent fungal growth. The culture was monitored and
when the bacteria was almost clear (�3 days) the C. Elegans were
isolated in accordance with previously described methods (21). C.
elegans were resuspended in 9 M urea containing a protease inhibitor
mixture (Roche #10711400 Branford, CT), 50 mM beta-galactosidase,
25 mM sodium fluoride, and 1 mM sodium orthovandate. Next, the
resuspension was tip sonicated and viewed under a microscope
following sonication until the C. elegans were sufficiently broken
apart. Following this, the lysate was cleared by centrifugation at
14,000 � g for 20 min at 4 °C and protein concentration was meas-
ured via BCA. 250 �g from light and heavy C. elegans were combined
for a total of 500 �g. The lysate was then alkylated with 10 mM of
iodoacetamide and reduced with 5 mM of dithiothreitol. Following this,
the lysate was diluted to a final urea concentration of 3 M and digested
with Lys-c for 4 h at room temperature. After digestion with Lys-c, the
lysate was diluted again to a final urea concentration of 1.5 M and
digested overnight with trypsin. After confirming digestion efficiency,
the sample was acidified with 1% TFA and centrifuged at 2000 � g for
5 min at room temperature. The supernatant was then loaded onto a
Sep-Pak cleanup C18 column (Waters, Cat#WAT051910 Milford, MA)
equilibrated with 0.1% TFA. Columns were washed with 12 ml of
0.1% TFA and peptides were eluted with 6 ml of 40% acetonitrile with
0.1% TFA. Eluted peptides were then lyophilized and subjected to
basic reverse phase liquid chromatography and then mass spectrom-
etry analysis.

LC-MS/MS—Peptide samples were analyzed on an LTQ-Orbitrap
Elite mass spectrometer (Thermo Electron, Bremen, Germany) inter-
faced with Easy-nLC II nanoflow liquid chromatography systems
(Thermo Scientific, Odense, Southern Denmark). The peptide digests
from each fraction were reconstituted in Solvent A (0.1% formic acid)
and loaded onto a trap column (75 �m � 2 cm) packed in-house with
Magic C18 AQ (Michrom Bioresources, Inc., Auburn, CA) (5 �m
particle size, pore size 100 Å) at a flow rate of 5 �l/min with solvent A
(0.1% formic acid in water). Peptides were resolved on an analytical
column (75 �m � 20 cm) at a flow rate of 350 nl min-1 using a linear
gradient of 7–30% solvent B (0.1% formic acid in 95% acetonitrile)
over 60 min. Mass spectrometry analysis was carried out in a data
dependent manner with full scans (350–1,800 m/z) acquired using an
Orbitrap mass analyzer at a mass resolution of 120,000 in Elite at 400
m/z. The twenty most intense precursor ions from a survey scan were
selected for MS/MS from each duty cycle and detected at a mass
resolution of 15,000 at a m/z of 400 in the Orbitrap analyzer. All the
tandem mass spectra were produced by higher-energy collision dis-
sociation (HCD) method. Dynamic exclusion was set for 30 s with a
10 p.p.m. mass window. The automatic gain control for full FT MS
was set to 1 million ions and for FT MS/MS was set to 0.05 million ions
with a maximum ion injection times of 100 ms and 200 ms, respec-
tively. Lock-mass from ambient air (m/z 445.120025) was used for the
internal calibration.

Data Analysis—Data analysis on the Proteome Discoverer platform
(version 2.0) was performed using MASCOT (version 2.2.0) (22) and
SEQUEST (23) as the search algorithms. For both MaxQuant and
Proteome Discoverer, the search parameters allowed for two missed
cleavages; carbamidomethylation at cysteine as a fixed modification;
N-terminal acetylation, deamidation at asparagine and glutamine,
oxidation at methionine, and the appropriate SILAC labeling provided
as variable modifications. For C. elegans data, the variable modifica-
tions of phosphorylation at serine, threonine and tyrosine were spec-
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ified. MS data was acquired on the LTQ-Orbitrap Elite mass spec-
trometer, the monoisotopic peptide tolerance was set to 10 ppm and
MS/MS tolerance to 0.1 Da. The false discovery rate was set to 1% at
the peptide level.

For analysis of MaxQuant and Proteome Discoverer data (supple-
mental Tables S1 and S2), PyQuant was provided with the output of
each respective program to perform an additional round of quantifi-
cation. PyQuant was provided with the msf output of Proteome
Discoverer and mzML files of the raw data. For C. elegans, the
additional parameter of “–spread” was supplied; otherwise the default
parameters were retained (precursor mass error of 5 ppm and iso-
tope-selection error of 2.5 ppm). For MaxQuant, the ms_ms.txt table
was provided as input.

Data Availability—The raw mass spectrometry data have been
deposited to the ProteomeXchange Consortium via the PRIDE part-
ner repository with the data set identifier PXD003327 (24).

RESULTS AND DISCUSSION

The goal of PyQuant is to provide a scalable, versatile
framework for MS-based quantitative analyses. To demon-
strate the various analyses PyQuant enables and its novel
capabilities, we used publicly available data sets that utilize
SILAC (25), NeuCode (26), 15N, and MS3 based TMT technol-
ogies (27).

PyQuant Accurately Quantifies a Variety of Quantitative MS
Data—To assess PyQuant against a SILAC sample with a
known isotopic mixture, three separate E. coli cultures were
grown with a mixture of light, medium and heavy arginine and
lysine amino acids in different ratios (Table I). Following over-
night growth, the cultures were lysed and processed for LC-
MS/MS as described under materials and methods. The raw
data from sample 3 which contained all labels in known
amounts was analyzed with two existing platforms, MaxQuant
and Proteome Discoverer in addition to PyQuant (supplemen-
tal Table S3 and S4 with additional protein level measure-
ments for Proteome Discoverer in supplemental Table S5). As
shown in Fig. 2A, PyQuant was able to recapitulate the known
sample ratios, and consistently matched SILAC ratios given
by Proteome Discoverer and MaxQuant. Thus, PyQuant is
able to match these existing algorithms in quantifying data of
known ratios.

Although SILAC uses labeling of select amino acids, a
similar technique, 15N, labels organisms by the metabolic
incorporation of 15N isotopes into any nitrogen containing
amino acids (28). To evaluate PyQuant’s ability to handle
15N-based quantitative MS data, a 15N labeled mouse liver
was compared with an unlabeled mouse liver. Equal amounts
of proteins extracted from each mouse liver were mixed and

processed for LC-MS/MS as described under materials and
methods. Following peptide assignment with Proteome Dis-
coverer, the raw data and search results were processed with
PyQuant to quantify the relative abundance of 15N to 14N
containing peptides. Because of MaxQuant and Proteome
Discoverer’s inability to quantify 15N data, to evaluate the
performance of PyQuant, spectra were manually interrogated
and compared with the ratio provided by PyQuant, which
confirmed that PyQuant provides values that are consistent
with manual interpretation (Fig. 2B).

A recently developed in vivo labeling technique is NeuCode,
where various combinations of 13C, 15N, and 2H are incorpo-
rated into an amino acid in order to label a cell or organism
(29). Because of the number of carbon, nitrogen, and hydro-
gen atoms in an amino acid, the number of combinations of
these isotopes results in marked increase in multiplexing ca-
pabilities, with up to 36 different mass combinations for lysine
alone. Currently, no available software supports quantification
of NeuCode isotopes. Thus, we tested PyQuant’s ability to
quantify this type of data. An experiment with known mixtures
of NeuCode labeled lysates was analyzed with PyQuant (26).
As shown in Fig. 2C, PyQuant was capable of quantifying
NeuCode data and the median quantification values matched
the known isotopic mixtures of each NeuCode reagent.

For chemical tagging methods, two common methods are
iTRAQ and TMT. Each method uses isobaric tags that do not
cause a mass shift between samples that can be detected in
MS1 scans, but upon fragmentation the tags provide the
relative abundance of each labeled sample. Because both
methods enable multiplexed comparisons of samples that
may not be metabolically labeled, such as clinical samples, it
has been widely employed in the quantitative proteomics
field. However, one complication which arises in MS2 based
quantification is interference from co-fragmentation of back-
ground ions, which can systematically skew relative abun-
dance measurements (30). A solution to this complication is
the use of MS3 for quantification as opposed to MS2, which
reduces the chance of co-fragmentation of unwanted ions
from MS/MS (31). We assessed PyQuant’s ability to quantify
at the MS3 level by comparing values derived from PyQuant
to previously published MS3 based quantifications (Fig. 2D)
(27). This revealed that PyQuant was nearly identical to the
previously published values and is capable of MS3 based
quantification.

Increased Quantification Rates by PyQuant—Because dif-
ferent peaks could be picked by different quantitation pro-
grams, employing multiple programs should increase the pro-
portion of peptide ions that are quantified. In the E. coli data
used above, we wished to determine the extent to which
PyQuant could increase quantification. As shown in Fig. 3A,
when analyzing a simple E. coli mixture, PyQuant increased
the rate of quantification by 25 and 45% when compared with
Proteome Discoverer and MaxQuant, respectively. To deter-
mine how confident the quantification of these peptides

TABLE I
Samples grown with known ratios of isotopically labeled amino acids

Mixing ratios

Lys-0 Lys-4 Lys-8 Arg-0 Arg-6 Arg-10

Sample 1 4 0 1 1 0 4
Sample 2 1 0 1 1 0 1
Sample 3 1 2 4 4 2 1
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missed by other programs was, we evaluated many of pep-
tides which MaxQuant and Proteome Discoverer failed to
quantify in PyQuant’s output, and determined most of them
were accurate (Fig. 3B). In addition to this manual analysis, we
evaluated the general distribution of peptides quantified only
by PyQuant to see how well they agreed with the expected
Heavy:Light peptide ratios (supplemental Fig. S6). This re-
vealed that for the majority of peptides that were not quanti-
fied by MaxQuant but were quantified by PyQuant, most
values reported by PyQuant were of the expected Heavy:Light
ratios (supplemental Fig. 6A). For peptides not quantified by
Proteome Discoverer but quantified by PyQuant, there was a
broader distribution of peptide ratios with �58% of the data
being within 1 log2 of its expected Heavy:Light ratio (supple-
mental Fig. 6B). This highlights that for some data, PyQuant
may be overly optimistic in its ability to quantify data. For
users to fully evaluate the quality of the data, PyQuant can
generate an interactive HTML output that allows the user to

view the isotopic clusters selected, the raw XIC, and the fitted
XIC for each isotope.

PyQuant Can Quantify Isotopically Labeled Peptides with
Unexpected Isotopic Patterns—SILAC was initially developed
for cell culture systems but is increasingly used for labeling
model organisms for global, quantitative analysis of protein
abundance. A potential complication of SILAC in organisms is
the metabolic conversion of experimentally introduced la-
beled amino acids into other amino acids (32, 33). Normally,
the incorporation of naturally occurring carbon and nitrogen
isotopes results in the spread of a peptide from its monoiso-
topic mass, with each combination of isotopes appearing as a
distinct species in a mass spectrum. Without amino acid
conversion, this pattern can be theoretically calculated and
used to identify which peaks correspond to a peptide of
interest. However, when there is an additional source of la-
beled isotopes, such as metabolic conversion of labeled
amino acids, the isotopic cluster widens and deviates signif-
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icantly from the theoretical distribution, thus complicating the
interpretation of protein abundance.

To evaluate how isotopic conversions impact the quantifi-
cation of existing programs, we labeled the nematode C.
elegans with heavy and light amino acids by growing them in
the presence of labeled bacteria. As shown in Fig. 4A, the use
of arginine as an isotopic label resulted in the spread of the
heavy isotopic cluster, which deviated significantly from the
isotopic distribution of the unlabeled peak. Notably, this peak
pattern deviates from the known arginine to proline conver-
sion that creates distinct satellite distributions of peptides
containing proline derived from isotopically labeled arginine
(33, 34). Instead, this peak distribution is consistent with a
previously described pattern resulting from the arginase path-

way, in which Arg-10 is converted to numerous amino acids
including aspartate, asparagine, methionine, lysine, and thre-
onine (32). This data was quantified with PyQuant, Proteome
Discoverer, and MaxQuant. We found that Proteome Discover
and MaxQuant routinely underestimated the heavy label’s
abundance, resulting in a systematic bias in the SILAC ratios
reported. We hypothesize this may be because of the reliance of
these algorithms on matching corresponding peaks from each
label’s isotopic distribution thereby ignoring peaks that deviate
significantly from the theoretical distribution of the isotopic clus-
ter (Fig 4B). Although restricting the data to known theoretical
distributions is useful for removing contaminating peaks, in
cases such as this, it is an incorrect assumption. Thus, to
correctly quantify labels that have undergone catabolism, pa-
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FIG. 3. PyQuant is capable of increasing the quantification rates of MaxQuant and Proteome Discover. A, PSMs from MaxQuant were
extracted and analyzed with PyQuant, which resulted in a 45% increase in the number of spectra quantified as compared with MaxQuant alone.
Similarly, PSMs from Proteome Discoverer were analyzed with PyQuant, which resulted in a 25% increase in the number of spectra quantified
as compared with Proteome Discover. B, The quantification by PyQuant of a peptide which was not quantified by MaxQuant is shown. The
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rameters in PyQuant can be set to not enforce the theoretical
distribution on labeled data. With this option, PyQuant correctly
identifies and quantifies the entire isotopic envelope (Fig. 4C).
Thus, PyQuant can be particularly useful in correcting compli-

cations arising from metabolic pathways and permits labeling of
organisms with minimal loss of quantitative information.

Targeted Ion Quantification with PyQuant—In conventional
data-dependent acquisition experiments, the most abundant
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ions are chosen for fragmentation. Although this approach is
useful in most cases, it can lead to non-intuitive results in
complex samples. For instance, if many ions species exist in
a given scan window that are of similar intensities, the mass
spectrometer will randomly select a set number of ions to
fragment. In replicate studies, this has the effect that ions
selected in one sample may not be chosen for fragmentation
in the other sample. This is commonly observed in the some-
times poor overlap in PSMs between replicates. To overcome
this issue, PyQuant can perform targeted searches for pep-
tides identified in one replicate that are not fragmented, but
present in the MS1 spectra of another replicate.

To determine how well a targeted search can increase the
concordance between replicates, we applied PyQuant’s
missing value analysis to a phosphotyrosine enrichment ex-
periment. A recent study evaluated the changes in phosphor-
ylation levels as a function of Thymic stromal lymphopoietin
(TSLP) signaling (25). Upon re-analysis of this data, we found
between two replicates, one replicate contained 186 phos-
photyrosine peptides unique to it and the second replicate
contained 131 phosphotyrosine peptides unique to it (Fig. 5A).
We performed a targeted search for these missing peptides
on the raw data of each replicate with PyQuant. This targeted

search provided replicate information for 77 of these phos-
phopeptides, which increased the concordance of quantified
phosphopeptides from 46% to 59% between the replicates
(Fig. 5B). Lastly, we plotted the phosphopeptide fold changes
for each replicate with and without the missing value analysis.
This revealed that many peptides followed the same general
trend of phosphopeptide abundance between the two sam-
ples (Fig. 5C).

It is important to note that this approach does have limita-
tions, as many ions can appear at identical m/z values and
retention times. However, in well controlled experiments, we
believe this option in conjunction with PyQuant’s detailed
visual outputs is a powerful tool for adding confidence to
measured peptides which are considered significant in one
replicate, but missing in another replicate.

We envision PyQuant as a useful complement to existing
tools that can be used to provide an additional measure of
confidence for quantified values as well as to quantify ions
that may be omitted by some programs. Similarly, other tools
may capture data that PyQuant misses. Thus, the ability of
tools to operate together more easily facilitates the integration
of multiple tools for a comprehensive analysis of a sample. For
simple analysis, PyQuant can be used in a plug-and-play
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FIG. 5. Filling in missing values between rep-
licate studies. A, The Venn diagram shows the
overlap of hyperphosphorylated peptides from
two replicate phosphotyrosine enrichments. Over
half of the data is not replicated between the two
samples. B, After performing a missing value
search with PyQuant on peptides unique to each
replicate, peptides which were not fragmented in
a given replicate are quantified. This increase is
shown by the increased overlap between the two
replicates. C, The SILAC ratios of phosphopep-
tides between each replicate. Each axis repre-
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Blue circles correspond to phosphopeptides
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recovered from PyQuant’s missing value analy-
sis. Each red circle was fragmented in only one
replicate, but by using the elution time and pre-
cursor ion, the ion is able to be quantified irre-
spective of its fragmentation. As shown, the red
and blue circles have a similar trend between the
two replicates, indicating the missing values fol-
low a similar trend as the ions fragmented in both
replicates.
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fashion with a variety of data sources and provides a simple,
easily parsed output. This allows the creation of and easy
deployment of minimal, light weight data analysis pipelines.
Lastly, because PyQuant decouples the quantification of
mass spectrometry data from the traditional peptide spectrum
identification and quantification pipeline, PyQuant opens new
avenues for novel and highly customized quantification strat-
egies on a variety of data types.
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